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‘We consider the problem of managing two assets, cash and an earning asset, when net
cash flows are stochastic and when there are transfer costs for transferring assets from
one form to the other. Previous work on the stochastic cash-balance problem has assumed
holding costs for holding excess cash and penalty costs for holding insufficient cash, with
these costs assessed per period (the same period in which there is a single decision or
transfer opportunity and a single random cash flow). This formulation is appropriate
when a firm faces minimum (or zero) compensating-balance requirements, but not when
the compensating-balance requirement involves an average deposit balarice over a number
of decision periods. A dynamic programming model is presented which appropriately
represents the relevant cost function for a firm facing an average compensating-balance
requirement. The dynamic programming solution to a numerical example is compared to
that of a static two-sided (s, S) policy; the optimal dynamic programming solution
represents an 18%, reduction in relevant costs in the example.

1. Introeduction

The problem under consideration involves the management of cash and short-
term financial assets for a firm facing a compensating-balance requirement specified
as an average balance over a number of days (e.g., weekly, bi-weekly, or monthly).
Daily net cash flows are partially? unpredictable and are treated as stochastic (spe-
cifically, as independent random variables). We consider only two assets: cash, and
some interest-bearing asset.

At the end of a period, cash holdings in excess of the compensating-balance require-
ment incur an opportunity cost, in that they could have been invested in the interest-
bearing asset. A cash level below the requirement presumably incurs some penalty
cost, which will be assumed to be proportional to the shortfall. Transactions costs of
converting excess cash into the earning asset and vice-versa make it uneconomic to
“even up”’ daily, and create the management decision problem studied (in variations)
here and in the references.

Previous Work

A number of researchers have analyzed various versions of the cash balance problem
(see references). A review of that work will not be presented here, except to point out
that almost all of the previous work has assumed implicitly or explicitly that there is
either 2 zero compensating-balance requirement or a requirement of the minimum
form. (References [7] and [11] do focus on the requirement to maintain average
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compensating balances; unfortunately, they restriet their form of operating policy to
a stationary type which is not optimal under the new setting.)

This paper will present a dynamie programming formulation of the stochastic eash
balance problem under an average compensating-balance requirement. The problem is
relevant because, as Gibson states, ‘- - - balance requirements often apply to average,
not daily, balances” [8, p. 387]. Other writers, including Frost [7], Miller and Orr
[14], [18], and Stone [26] make the same point. §2 of the paper presents the dynamie
programming model. §3 describes a realistic numerical example which has been solved
by both the dynamie programming model and by a static two-sided (s, S) policy.

2. The Dynamic Programming Model

Time periods (days) are numbered backwards from some horizon N days away.
Let X, represent the opening cash balance on day =, prior to any transfer decision.
Let Y, represent the cash balance immediately after a transfer action (if any). We
allow for both fixed and variable components of - transfer costs A(X,, ¥Ya):

=K+4+k(Y,—X,) if¥Y,>X,,
1 A(X.,Y,) =0 if Yo = X,
=Q+g(Xa~Y,) ifY,<X,,.

The average compensating balance requirement is given exogenously as R per day
over an N-day averaging period, or NR dollar-days. The opportunity ¢ost of holding
a greater-than-R average balance is ¢, per dollar per N-day period; we presume there
is & per-dollar net? penalty cost ¢. per N-day period for holding less than the “required”’
average R balance.

Random daily net cash inflows (4 or —) are denoted by &, , independent random
variables with known probability density function p,(£,). These random flows oceur
after transfer action (if any) has been taken. Thus the equation relating successive
daily cash balances for days n and (n — 1) is:

(2) Xn—1=Xn+(Yn—Xn)'*‘fn"—-Yn'*‘En-

Let S, represent the cumulative sum of daily closing balances from the first day
(N) through day n 4+ 1 inclusive; then

3) Sp = 2 W (Vi t &),

The state vector will be (S, , X.). The usual dynamic programming return function
will be defined as £, (S, , X.) equal to the minimum expected cost from day n through
day 1, given (S, , X») and assuming optimal decisions are made from day » through
day 1.

One-Period Problem

Now consider the last day (day 1). Action must be decided upon at the beginning
of .the-day-eoncerning a. potential transfer; subsequently, random cash flow & will
occur; and, since this is the last day of the N-day averaging period, overage and under-
age costs will be assessed as appropriate. We may write the following dynamic pro-

1 1.e., the gross penalty cost less c,, the rate at which interest is earned on the earning asset.
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Figure 1. The Simple Static Policy (¢, T, U, u).
Ficure 2. Results of Dynamic Programming Model.

gramming return function for period 1:

(S, X = Minimumm{A X1, ¥)

NR—8,-Y,
4 + cuf [NR — 8 — Y1 - &lpu(&)dh

-

+of Y Lt S+Y- NRJpl(a)dzx}
NR—-S1-¥Y1

where W represents a lower bound (W > 0) on the ending balance, so as to keep the
probability of a negative balance sufficiently low®. Denote the two integral terms in
(4) by the symbol L,(Y, | S1). Then the function L,(+ | <) is convex in Y}, and the
required minimization of equation (4) is obtained [15, pp. 477-4797] as follows:
=T,Xi =4
(5) Vw*=X1,4<Xi<wy with 4 <TW<Ui<u
=U, m =X,
(or if the lower bound W is active, then ¥;* = W). The policy described by (5) has

been called a “simple” policy, or a two-sided (s, S) policy [15, p. 4737; see Figure 1
for illustration of a corresponding static or stationary policy.

n-Period Problem

The general recursion relation corresponding to (4) for period n requires the ex-
pression of the state vector at period n — 1 in terms of the state vector and decision
variable at period n. By definition,

Bact =8a+ Y.+ &

1 Stone indicates that ‘. . . a firm-can tolerate fairly large fluctuations in its cash balances as long a8
net collected balances are not negative’ [26, p. 73].
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and
Xn—-l =Y, + k..

Now (4) may be modified in the usual manner to represent the return function for
day n as follows:

©) fu(Sn) Xa) = Miny,;w{uxn, Y2)

+ " faaSa ot Yo by Yoot £)Pa()

fn=—c

forn =2,3, ++¢, N

(4) and (6) forn = 1,2, -++, N may be solved recursively to yield the optimal policy
Y,.*(S., X,) as a tabled function of the two-dimensional state vector at each decision
stage.

Linking Successive Averaging Periods

It is important to note that solving (4) and (6) for n = 1, <«+, N represents the
optimal solution to a single-averaging-period problem. In reality, the end of each
averaging period is the beginning of the next. Thus, while the average balance earned
in the previous period is not “carried over”, there is a linking between successive
periods through the actual level of ending cash balance, X, = Y; + &, which by
definition becomes the opening balance Xy for the next averaging period.

A formal way to model this linking is to modify (4) to represent follow-on effects by
adding an additional term as follows:

A8, X)) = Mixﬂmmny,;w{A X, )
NR-S,~Y,
@ taf INR- 8- Yi- 5lne)ds
e f Y [+ S+ Y- NEIp()dh
NR-S;—-Y1

+ [ " w0, ¥s + sl)px(sl)da}-

Then solution of (7) and (6) could proceed as follows:

1. Solve (4) for fi( ).

2. Solve (6) for f2( ), and recursively for f5( ), ««-, fw( ).

8. Solve (7) for fi( ), using fv( ) just obtained.

4. Go to Step 2 and cycle between 2 and 3 until sufficient convergence oceurs in the
optimal decision tables ¥,*(S., X.).

As a practical matter, the linking of successive averaging periods seems overly
sophisticated, given the other assumptions of the madel. The only effect such linking
would have would be the effect of entering a new averaging period with a particular
level of cash balances as opposed to some other level. Since the very problem we
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TABLE 1

Data for Numerical Ezample
Fized Variable
Transfer Costs {(dollars) (8§ per th d dollars ferred)
Cost of transfer from interest K = $20.00 k=0.5
earning asset to cash
Cost of transfer from cash to Q = $20.00 g=0.5

interest earning asset
Overage and underage costs (in § per thousand of deviation from requirement)
Cost per day of being above balance requirement: ¢,/N = 0.25
Cost per day of being below balance requirement: e,/N = 0.375

Time Horizon: N = 20 days (period over which the average balance is computed).

are studying allows the decision-maker to effectively transfer dollar-days around
within the averaging period, it is reasonable to assume that ignoring this minor
linking will not penalize our decisions significantly. Therefore, for the remainder of
the paper we focus solely on (4) and (6) as the optimizing model.

3. A Numerica! Example

In this section, a numerical example is described which has been solved both
by the dynamic programming model of §2 and by a simple static (¢, T, U, u) policy
for comparison purposes.

The numbers and parameter values selected for the example represent our estimates
of a realistic problem. The distribution of daily net cash inflows was taken directly
from research by Homonoff and Mullins [117] to be Normal* with mean of $4,000 and
standard deviation of $580,000; this distribution and its parameters closely approxi-
mated the daily net cash inflows of an actual U.S. corporation over an 1l-month
period (see [117]). That corporation was required to maintain an average compsnsating
balance of $3 million; we selected this identical requirement for our example. Other
data required for the example is described in Table 1.

Dynamic Programming Model

The continuous state space (S,, X,) of the dynamic programming model of §2
was modified to a discrete two-dimensional grid for computational purposes. The
accuracy of the discrete approximation to the underlying continuous process is de-
pendent on the size of the grid and the number of points on it. A large grid with many
points (i.e., small step size from one point to the next) will be more accurate than a
smaller grid with fewer grid points, since interpolation between the two-dimensional
grid points will increase in accuracy as the distance between the points decreases.
However, the computer program to compute (4) and (6) will take increasingly larger
amounts of time to run as the grid is made more dense, and a tradeoff between ac-
curacy and computational expense must be made.

Table 2 presents three-alternative grid sizes.and corresponding dynamic programms-
ing results for our numerical example. Figure 2 illustrates the tradeoff between in-

4 For computational purposes, the normal distribution was approximated by a discrete probability
function.
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TABLE 2
Results of Dynamic Programming Model

Cash Balances Cumulative Cash Balances
Xn Sn
Xmin Xrax # of Smin Smax # of Expected Cost Com%f&? t.1?.\111
(thousands) intervals (thousands) intervals ($ per month) [€))
0 9000 10 0 95000 20 3144.9 5.60
0 9500 20 0 95000 20 2881.34 12.72
0 9750 40 0 97500 40 2514.42 146.24

creased grid size (and computation cost) and improvements in cost from increased
accuracy.

Comparison Model

It is not 2 simple matter to find a reasonable policy against which we can compare the
results of the dynamic programming calculations. Since the problem is clearly non-
stationary, one might consider a dynamic version of the so-called “simple” policy.
Thatis, 8 (tx , T's , Un , u.) policy for day n. However, derivation of optimal parameter
values for such a policy is essentially as much computational effort as the complete
dynamic programming solution to any given numerical problem. This did not seem a
good use of computer time to us.

We finally settled on a comparison model using a static (stationary) policy of the
simple (¢, T, U, u) form. While this type of policy totally ignores the nonstationary
aspects of the problem, it does provide a simple benchmark against which the improve-
ment from dynamic programming can be assessed.

Even in the stationary case of the simple policy there is no analytical way to de-
termine optimal parameter values, so a computer simulation was performed to obtain
approximately-optimal pardmeter values. This simulation was used first in an ex-
ploratory manner with 25 simulations per policy to locate the region in parameter
space which seemed appropriate for further study (see Table 3). Then a second series
of runs were made with 100 simulations each to obtain 2 more precise estimate of both
optimal parameter values and the resulting minimum average cost (see Table 4). The
lowest® average monthly cost, $3089.40, was associated with a symmetric policy where

= 2250, T = 2500, U = 3500, u = 3750, (see last row in Table 4). Assuming the
computer run costs for running the simulations of Table 4 (run time only) where $25,
the best static policy is also plotted in Figure 2,

Conclusions

From Figure 2, the most accurate dynamic programming model produced the
lowest expected costs ($2514.42). This cost is 18%, less than the best static (¢, T, U, u)
policy, which cost $3089.40. It should be emphasized that once the optimal dynamie
programming solution has been obtained, it is available in tabular form and can be

81t is likely that the parameter values producing the lowest average cost in Table 4 are not the
“‘optimal”’ parameter values. However, given the standard deviation of the cost values (see Table 4),
it is likely that the cost figure $3089.40, chogen a8 it was by ranking sample results, is an underestimate
of the cost of the corresponding parameter values from the theory of order statistics. Thus the effect of
possibly missing the optimal parameter values is at least partially offset by the order-statistics effect.
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TABLE 3
Results from the First Set of Simulations
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(25 simulations per policy tested)
Parameters
(in thousands of dollara)
Average Cost Standard Deviation of Coat

¢ T U u ($ per month) (in collars)

0 2000 4000 6000 7,413.7 4,616.4
1000 2000 4000 5000 5,200.5 2,641.4
2300 2600 3750 4050 3,820.9 1,169.4
2000 3000 3000 4000 3,804.8 1,351.7
2250 3000 3000 3750 3,745.7 770.5
1500 2500 3500 4500 3,722.5 ,059.7
2450 2800 3625 4025 3,653.6 ,352.9
2400 2800 3675 4025 3,611.0 ,561.6
2500 3000 3500 4000 3,431.7 ,445.7
2000 2750 3250 4000 3,401.8 ,647.1
2350 2600 3750 4050 3,365.5 ,798.0
1750 2500 3500 4250 3,362.7 ,071.3
2300 2600 3800 4050 3,319.8 .6
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used without further computer cost as long as the problem description remains es-
sentially unchanged with respect to the model. Thus, even though computer program-
ming (as opposed to the solution run) of the dynamie programming model was cer-
tainly more involved and more costly than that of the simulation, the initial program-
ming represents a one-shot investment, and the initial major run (costing $146.20
in Figure 2) represents an investment which need not be repeated until elements of
the problem change significantly.®

Further Research

We have totally ignored the question of maturity of the earning asset. Unless one is
purchasing overnight Repurchase Agreements, then using our model one faces the
problem of possibly selling an asset prior to its maturity, which is undesirable for a
number of practical reasons. Direct inclusion of maturity life would quickly make the
dynamic programming formulation computationally infeasible; some innovative way
of incorporating maturities is needed to cope fully with this aspect of the problem.

Also, Homonoff and Mullins [11], in their study of actual daily net cash inflows,
found that two distinct patterns were present in mean cash flows: a day-of-week
pattern, and a separate pattern based on dividing the month into three 10-day periods
(for details see [117]). The model presented here was analyzed using a data-generating
process for daily net cash inflows which did not contain these time dependencies.

¢ If the dynamic programming model is modified to take into account forecasts of cash flows, and
if these forecasts change over time, then the solution would have to be recomputed each time a
forecast revision oceurred. Nevertheless, no reprogramming would be required.
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E 4
Simulation of Static Simple (t, T, U, u) Policies

(100 simulations per policy tested)
Parameters
(in thousands of dollars)
Average Cost Stendard Deviation of Cost

3 T /4 u ($ per month) (in dollars)
2500 3000 3500 4000 3,703.1 1,230.9
2500 2750 3750 4000 3,648.4 1,372.6
2400 2800 3625 4075 3,614.8 1,461.4
2400 2800 2675 4025 3,632.7 1,348.5
2345 2790 3585 4005 3,605.9 1,816.5
2400 2800 3600 4000 3,686.7 1,470.1
2340 2816 3569 4007 3,578.0 1,486.8
2355 2790 3575 4005 3,675.3 1,654.1
2340 2816 3574 4002 3,559.6 1,330.0
2400 2850 3625 4025 3,406.9 1,385.3
2345 2816 3569 4002 3,405.2 1,309.3
2846 2790 3675 4018 3,397.8 1,608.4
2450 2800 3625 4025 3,389.8 1,330.1
2345 2790 3575 4005 3,352.4 1,531.1
2400 2800 3625 4025 3,250.9 1,399.6
2340 2816 3569 4002 3,294.3 1,408.5
2345 2816 3569 4002 3,291.3 1,442.1
2300 2800 3500 4000 3,262.5 1,398.5
2345 2800 3575 4005 3,199.0 1,404.9
2250 2500 3500 3750 3,089.4 1,359.7

While (4) and (6) could readily incorporate different mean cash flows based on the
day of the month n, the question of a benchmark alternative policy is harder to answer
in this more complex world. Finally, in [117] the corporate officer responsible for cash
and earning asset transfers felt that major influences on cash flows were known to him
through his general business experience. The current research has not shed light on
the question of whether the latter factor can in fact dominate the actual results of a
cash balance problem.
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